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A Concise Synthesis of (+)-Monomorine I by way of a Palladium-Catalyzed
Reductive Coupling
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Abstract: A seven steps synthesis of the indolizidine alkaloid (*)-monomorine I is described starting
from 2-methylpiperidine. The key step of the synthesis is a palladium-catalyzed reductive coupling
reaction of an acid chloride with a B-stannanyl enone to give a 1,4-diketone.

We have recently developed a new method for the synthesis of 1,4-diketones by a palladium-catalyzed
coupling of acid chlorides with B-stannyl enones.l The reaction is general and tolerates the presence of double
bonds conjugated with a single carbonyl group. Interestingly, the reduction of the intermediate o,f-
unsaturated 1,4-diketone is catalyzed by palladium complexes and promoted by Bu3SnCl, formed as a
byproduct in the coupling process.2

‘ 0 Pd(PPhg), RY\/U\
Ricocl + n/\/lL —_— 2
BusST X" “R?  1,d-dioxane , 100 °C | R

Herein we report an application of this reaction to a concise synthesis of the indolizidine alkaloid
monomorine I (1),3 a substance isolated from the ant Monomorium pharaonis.# Its C-3 epimer, indolizidine
195B (gephirothoxine 195 B) (2), is also a natural product isolated from the skin of the poisonous tropical
frog Dentrobates histrionicus.5-6 Other 3,5-disubstituted indolizidine alkaloids have been isolated from
different species of ants? and amphibians.8 A new reduction reaction promoted by BuaSnCl and catalyzed by
palladium was observed in the course of the synthesis.
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2-Methyl-N-(2,2,2-trichloroethoxycarbonyl)piperidine (TROC-2-methylpiperidine) (3) was prepared
in 96 % yield by acylation of commercially available 2-methylpiperidine with TROC-CI under Schotten-

Baumann conditions (Scheme 1).9 Oxidation of the C-6 methylene to give the imide 4 (88 %) was
accomplished with RuQj4, generated under catalytic conditions according to the procedure of Sharpless.10
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Hydrolysis of 4 led cleanly to acid § in 89 % yield. The oxidation of carbamate 3 with aqueous KMnOy at 100
°C!1 gave 5 in one step, albeit in rather low yield (17 %).
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Scheme 1

Coupling of the acid chloride of § with B-stannyl enone 62.12 proceeded in the presence of Pd(PPh3)4
as the catalyst in dioxane (100 °C, 24 h) to give 7 (45 % yield).1.2 The moderate yield obtained in this
coupling was due in part to the competitive cyclization of the acid chloride to imide 4. When the coupling
reaction was carried out at 40 °C for 4 h, the o, B-unsaturated 1,4-diketone 8 was obtained in 49 % yield.13
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Small amounts (ca. 5 %) of a byproduct 9 with a 2,2-dichloroethoxycarbonyl protective group were
also isolated in the coupling reaction carried out under refluxing conditions for long reaction times. This
surprising reduction was promoted by Bu3SnCl in a process catalyzed by palladium catalysts. Thus, treatment
of 3 with Bu3SnCl in dioxane under reflux in the presence of Pd(PPh3);Cl2 as the catalyst gave
dichloroethoxycarbonyl derivative 10 (24 h, 11 % yield).

Deprotection of the TROC protective group with Zn and HOAc in THF at 23 °C in the presence of
KH32PO414 led to a 1:1 mixture of the desired pyrrole 11 and 9. Higher temperatures led to extensive
decomposition of 11. Further treatment of carbamate 9 under the reduction conditions failed to give 11. Better
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results were obtained by reductive cleavage of the protective group by sonication with Cd in a 1:1 mixture of
DMF and HOACc at 23 °C15 leading cleanly to 11 in 96 % yield.

We have originally expected that the use of benzyloxycarbonyl (Cbz) protective group would have
allowed for its direct removal under hydrogenolytic conditions with simultaneous reduction of the pyrrole
ring. The starting carboxylic acid 12 could be prepared in very poor yield by oxidation of N-
(benzyloxycarbonyl)-2-methylpiperidine.!6 An alternative synthesis is shown in Scheme 2 starting from
BOC-protected piperidine 13, prepared quantitatively by reaction of 2-methylpiperidine with (BOC)20 in
refluxing THF. Oxidationll of 13 ied to 14 (32 % yield), which, after treatment with excess ethereal
diazomethane was submitted to the protective group exchange developed by Ohfune.!7 Final saponification!8
led to 12 in 36 % yield (four steps). Unfortunately, the acid chloride of 12 gave only decomposition products
after treatment with stannane 6 under the reductive coupling conditions.!-2
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Catalytic hydrogenation of 11 with 1-3 atm of H2 at 23 °C in the presence of PtO; or Rh/Al;0332.b.19
in EtOH gave negative results. Addition of small amounts of acids (HOAc¢, TFA, or HCI) led to
decomposition of the pyrrole 11 along with traces of 1 and its three diastereomers. The best results were
obtained by using Rh/C as the catalysts (1 atm Ha, EtOH, 25 °C, 24 h)8a.19 leading to the formation of a
mixture of 1 two of ist diastereomers 15 and 16 in a 2:2:1 ratio (60 % yield).20
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In summary, the developed synthesis of (+)-1 is concise and demonstrates the application of the
reductive coupling reaction for the synthesis of fuctionalized 1,4-diketones. If desired, this synthesis could
also be applied for the preparation of either antipede of 1 starting from known optically pure 2-
methylpiperidine.21-22
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